


Available online at www.sciencedirect.com



Talanta 66 (2005) 976-981



# Optical $CO_2$ sensor of the combination of colorimetric change of $\alpha$ -naphtholphthalein in poly(isobutyl methacrylate) and fluorescent porphyrin in polystyrene

Yutaka Amao\*, Tasuku Komori

Department of Applied Chemistry, Oita University, Dannoharu 700, Oita 870-1192, Japan

Received 29 August 2004; received in revised form 18 December 2004; accepted 18 December 2004

Available online 30 January 2005

#### **Abstract**

An optical  $CO_2$  sensor based on the overlay of the  $CO_2$  induced absorbance change of pH indicator dye  $\alpha$ -naphtholphthalein in poly(isobutyl methacrylate) (polyIBM) layer with the fluorescence of tetraphenylporphyrin (TPP) in polystyrene layer is developed. The observed luminescence intensity from TPP at 655 nm increased with increasing the  $CO_2$  concentration. The ratio  $I_{100}/I_0$  value of the sensing film consisting of  $\alpha$ -naphtholphthalein in polyIBM and TPP in polystyrene layer, where  $I_0$  and  $I_{100}$  represent the detected luminescence intensities from a layer exposed to argon and  $CO_2$  saturated conditions, respectively, that the sensitivity of the sensor, is estimated to be 192. The response and recovery times of the sensing film are less than 6.0 s for switching from argon to  $CO_2$ , and for switching from  $CO_2$  to argon. The signal changes are fully reversible and no hysterisis is observed during the measurements. The highly sensitive optical  $CO_2$  sensor based on fluorescence intensity changes of TPP due to the absorption change of  $\alpha$ -naphtholphthalein in polyIBM layer with  $CO_2$  is achieved.

Keywords: Optical CO<sub>2</sub> sensor; Poly(isobutyl methacrylate); α-Naphtholphthalein; Fluorescence; Colorimetric change

#### 1. Introduction

In the chemical, clinical analysis and environmental monitoring fields,  $CO_2$  sensing techniques are widely used. The  $CO_2$  in gaseous phase has been measured by infrared (IR) absorptiometry [1,2] and electrochemically using Severinghaus electrode [3]. Optical  $CO_2$  sensor based on the strong IR absorption of  $CO_2$  has been developed. However, sensitive IR absorptiometry sensor is subject to strong interference from water vapour and is an expensive system. In contrast,  $CO_2$  sensor using Severinghaus glass electrode, which detects the changes in the pH of surrounding bicarbonate ion solution brought about by permeation and subsequent hydration of  $CO_2$  through a thin silicone film. Thus, highly sensitive and simple  $CO_2$  sensor is desired. Recently, the optical  $CO_2$  sensors based on the  $CO_2$  induced absorbance or fluorescence

change of pH indicator have been developed. The optical CO<sub>2</sub> sensors are classified into two types. One is the sensor based on the colorimetric change of pH indicator dye, such as thymolsulfonphthalein (thymol blue), α-naphtholphthalein and so on [4–8]. The other sensor is the basis of the CO<sub>2</sub> induced fluorescence change of fluorescent dye such as 1hydroxypyrene trisulfonate [8–13]. For the fluorescent phenol and hydroxypyrene based CO<sub>2</sub> sensor, the fluorescence intensity change with the shift of fluorescent dye from its fluorescent form (phenolate anion) into the non-fluorescent form (phenol neutral form) is used. In contrast, Walt et al., reported the optical CO<sub>2</sub> sensor based on the pH dependent fluorescence and energy transfer between luminescence dye to pH indicator [14–16]. However, the number of compound, which fluorescence intensity is changed by CO<sub>2</sub>, is extremely limited. The optical CO<sub>2</sub> sensor with the combination of colorimetric change of pH indicator dye and luminescent dye (internal reference dye) will be developed. In principle, the CO<sub>2</sub> sensor based on the luminescence change will be devel-

<sup>\*</sup> Corresponding author. Tel.: +81 97 554 7972; fax: +81 97 554 7972. *E-mail address*: amao@cc.oita-u.ac.jp (Y. Amao).

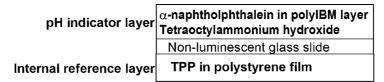
oped by the wavelength overlap between the luminescence band of internal reference dye and the absorption band, which is changed by CO<sub>2</sub>, of pH indicator dye. The study on the CO<sub>2</sub> sensor using two dyes with reference dye has been reported [17]. In this report, the fluorescent ruthenium complex is used as a reference dye. In the optical sensor, the effect of surrounding humidity on the response and sensitivity is serious problem. Thus, the hydrophobic polymer film is desirable for the dye immobilization media. As the fluorescent ruthenium complexes are ionic molecules, the preparation of homogenous dye layer is difficult. Porphyrin molecules are suitable for the hydrophobic fluorescent dye. Tetraphenylporphryin (TPP), which is the hydrophobic molecules, is useful fluorescent dye for the immobilized to hydrophobic polymer media. We previously reported the optical gaseous CO<sub>2</sub> sensors using various pH indicators in ethyl cellulose layer and red-luminescent europium(III) complex or TPP in polystyrene layer as an internal reference dye [18-21]. Especially,  $\alpha$ -naphtholphthalein has a large  $A_0/A_{100}$  value compared with the other pH indicators, where  $A_0$  and  $A_{100}$  are absorbance in the 100% argon and 100% CO<sub>2</sub> gaseous, respectively. α-Naphtholphthalein has the absorption band at 600 nm and this band decreases with increasing of CO<sub>2</sub> concentrations. On the other hand, TPP has the emission band at 655 nm with excitation of 350 nm and this emission is not affected by CO<sub>2</sub>. Thus, α-naphtholphthalein and TPP are useful for pH indicator and internal reference dye, respectively. Moreover the conventional optical CO<sub>2</sub> sensor using cheep black light will be developed by device consisting of  $\alpha$ -naphtholphthalein and TPP. In the sensing film consisting of two dyes immobilized in same polymer film, pH indicator indicates with internal reference dye in polymer film. Thus, we suggest the two separate polymeric films, pH indicator and internal reference layers, via the glass substrate. As the pH indicators are surrounded with polymer molecules, on the other hand, the optical sensing performance strongly depends on the properties of polymer matrices of pH indicator layer. A CO<sub>2</sub> permeable polymer with a low diffusion barrier for CO<sub>2</sub> is desired. Poly(isobutyl methacrylate) (polyIBM) film has a highly CO<sub>2</sub> permeability and a low diffusion barrier for CO<sub>2</sub> [22]. Thus, polyIBM is a suitable matrix for optical CO<sub>2</sub> sensing of pH indicator layer.

In this work, polyIBM is applied to the polymer matrix for pH indicator layer of optical  $CO_2$  sensor based on the colorimetric change of  $\alpha$ -naphtholphthalein and the fluorescence of TPP and its sensing properties for  $CO_2$  is developed.

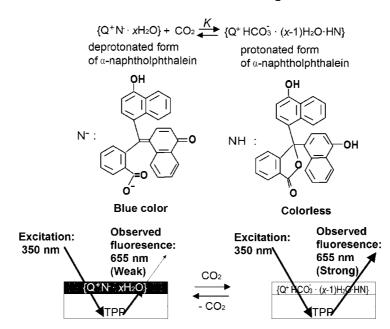
## 2. Experimental

#### 2.1. Materials

Tributyl phosphate and  $\alpha$ -naphtholphthalein are obtained from Wako Pure Chemical Co. Ltd. Poly(isobutyl methacrylate) (polyIBM; average  $M_{\rm W}$  100,000, GPC grade), TPP and tetraoctylammonium hydroxide are obtained from Tokyo


Chemical Industry Co., Ltd. Polystyrene (average  $M_{\rm W}$  280,000, GPC grade) is purchased from Aldrich. Non-luminescence glass slides are obtained from Mitsubishi Chemical Co., Ltd. The other reagents are of the highest grade available.

## 2.2. Preparation of CO<sub>2</sub> sensing film


The CO<sub>2</sub> sensing film had composition CO<sub>2</sub> indicator dye/ phase-transfer agent/polymer/plasticizer/solid support/reference luminescence dye/polymer, i.e., α-naphtholphthalein/ tetraoctyl ammonium hydroxide/polyIBM/tributyl phosphate/non-luminescent glass slide/TPP/polystyrene as shown in Scheme 1. To improve the response and recovery times, and sensitivity of the sensor based on the pH indicator immobilized polymer film, tributyl phosphate is used as a plasticizer [4–6]. At first,  $\alpha$ -naphtholphthalein immobilized in polyIBM film is prepared onto the one side of non-luminescent glass slides (1.4 cm × 5.0 cm) according to the previous reported method [6]. Component solution (1) is prepared by adding 3.7 nmol  $\alpha$ -naphtholphthalein to 2 ml of a 0.7 mol dm<sup>-3</sup> tetraoctylammonium hydroxide in methanol solution. Component solution (2) is 0.025 g of polyIBM in 2.5 ml toluene. The solution for  $\alpha$ -naphtholphthalein film consisted of 1.5 ml of solution (1), 2.5 ml of solution (2), 0.5 ml of tributyl phosphate and 7.0 ml of toluene. Tributyl phosphate is used to form the plasticized film. The α-naphtholphthalein film is formed by casting 0.2 ml of the above solution onto one side of a non-luminescent glass slide (1.4 cm  $\times$  5.0 cm). The film is dried at room temperature and then TPP immobilized in polystyrene film is formed by casting 0.2 ml of a mixture of 1.0 µmol of TPP in toluene solution onto the opposite side of the glass slides. The thickness of  $\alpha$ -naphtholphthalein in polyIBM layer is 10 μm. The prepared film is defined as CO<sub>2</sub> sensing film.

## 2.3. Properties of CO<sub>2</sub> sensing film

The sensing properties of CO<sub>2</sub> sensing film are studied using fluorescence spectra changes. Fluorescence spectra of the CO<sub>2</sub> sensor film are measured using a Shimadzu RF5300-PC fluorescence spectrometer with a 150 W xenon lamp as an excitation light source. Excitation and emission bandpasses are 3.0 nm. The sample substrate is mounted at a  $45^{\circ}$  angle in the quartz cell to minimize the light scattering from the sample and substrate. The excitation light is irradiated from the α-naphtholphthalein film side and the reflectance light is also detected from the  $\alpha$ -naphtholphthalein film side. Different CO<sub>2</sub> standards (in the range 0–100%) in a gas stream are produced by controlling the flow rates of CO2 and argon gases entering a mixing chamber. The total pressure is maintained at 760 Torr (1 Torr = 133.322 Pa). All the experiments are carried out at room temperature. The properties of CO<sub>2</sub> sensing film are studied. The reaction process between α-naphtholphthalein and CO<sub>2</sub> can be described as shown in Scheme 1; where  $\{Q^+N^-\cdot xH_2O\}$  is the ion pair



## Construction of CO₂ sensing film



Scheme 1. The construction of CO<sub>2</sub> sensing film, the reaction process between α-naphtholphthalein and CO<sub>2</sub>, and the principle of optical CO<sub>2</sub> sensing.

formed between the tetraoctylammonium cation Q<sup>+</sup> and the deprotonated form of  $\alpha$ -naphtholphthalein N<sup>-</sup>. The ratio of the concentrations of the α-naphtholphthalein in its protonated and deprotonated forms is proportional to the concentration of CO<sub>2</sub>. In Scheme 1, K is the equilibrium constant. The schematic representation of sensing principle is shown in Scheme 1. As deprotonated form of  $\alpha$ -naphtholphthalein (N<sup>−</sup>) is blue color in the absence of CO<sub>2</sub>, the fluorescence at 655 nm from TPP layer is absorbed by N<sup>-</sup> layer. Thus, the observed fluorescence intensity decreases. In contrast, the protonated form of α-naphtholphthalein (NH) is colorless in the presence of CO<sub>2</sub>. Thus, the observed fluorescence intensity increases. The observed luminescence intensity at  $655 \,\mathrm{nm}$  increased in proportion to the transmittance (T) of the deprotonated form of  $\alpha$ -naphtholphthalein (N<sup>-</sup>). The T of the deprotonated form of  $\alpha$ -naphtholphthalein is expressed as follows:

$$T = 10^{-\varepsilon d[\{Q + N^- \cdot xH_2O\}]}$$
(1)

where  $\varepsilon$  and d are the molar extinction coefficient and thickness of sensor film, respectively. Thus,  $-\varepsilon d$  is constant and can be replaced by A. The relationship between I and T is expressed as follows:

$$I = BT = B10^{A[\{Q+N^{-} \cdot xH_{2}O\}]}$$
 (2)

where *B* is a constant. The concentration of  $\{Q^+N^- \cdot xH_2O\}$  is expressed as Eq. (3):

$$[\{Q^{+}N^{-} \cdot xH_{2}O\}] = -KA[\{Q^{+}N^{-} \cdot xH_{2}O\}]_{0}/(K + [CO_{2}])$$
(3)

Here,  $-KA[\{Q^+N^-\cdot xH_2O\}]_0$  is replaced by a constant *C*. Then Eq. (2) is re-written to Eq. (4).

$$I = B \, 10_{\{-C/(K + [CO_2])\}} \tag{4}$$

The observed luminescence intensity change by  $CO_2$  is expressed to be  $I/I_0$ .  $I_0$  is the luminescence intensity at 655 nm of  $CO_2$  sensor film in 100% argon gas. Thus, the relationship between observed luminescence intensity at 655 nm and  $CO_2$  concentration is following the Eq. (5).

$$I/I_0 = 10_{\{-C(1/(K + [CO_2]) - 1/K)\}}$$
(5)

#### 3. Results and discussion

#### 3.1. Spectral properties of CO<sub>2</sub> sensing film

The luminescence spectrum change of  $CO_2$  sensing film when excited at 350 nm under various  $CO_2$  concentrations as shown in Fig. 1. The excitation light is irradiated from the  $\alpha$ -naphtholphthalein film side. As the absorption band at 350 nm

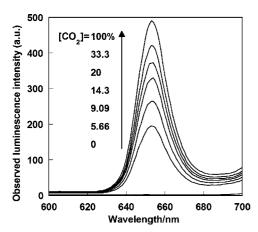



Fig. 1. Luminescence spectrum change of  $CO_2$  sensing film under various  $CO_2$  concentrations. The excitation wavelength is 350 nm.

of  $\alpha$ -naphtholphthalein did not change in the presence and in the absence of  $CO_2$ , the excitation light penetrated to TPP film without loss. As the absorption band abound 655 nm of  $\alpha$ -naphtholphthalein decreased with increasing the  $CO_2$  concentrations, the observed luminescence intensity from TPP at 655 nm increased. On the other hand, little change of fluorescence of TPP in polystyrene film is observed by  $CO_2$  gas, indicating that the fluorescence of TPP is not affected by the  $CO_2$ .

## 3.2. CO<sub>2</sub> sensing properties

The ratio  $I_0/I_{100}$  is used to represent the sensitivity of the sensing film, where  $I_0$  and  $I_{100}$  represent the detected fluorescence intensities from a sensor film exposed to 100% argon and 100%  $\rm CO_2$ , respectively. In general, the sensor having the ratio  $I_0/I_{100}$  more than 3.0 is a suitable sensing device [23]. The  $I_0/I_{100}$  value of  $\rm CO_2$  sensing film is estimated to be 192. In contrast, we previously reported that the  $I_0/I_{100}$  value of  $\rm CO_2$  sensing film consisting of thymol blue in ethyl cellulose layer and [Eu(tta)<sub>3</sub>] in polystyrene layer is estimated to be 16.0 [15,16]. Thus, highly sensitive optical  $\rm CO_2$  sensor is developed using  $\alpha$ -naphtholphthalein immobilized in polyIBM layer. Fig. 2 shows the plot of  $I/I_0$  versus the  $\rm CO_2$  concentration. In Fig. 2, the solid line is the best-fit using Eq. (5). This result indicates that  $\rm CO_2$  sensor film can be calibrated by Eq. (5).

Next, the interference from other gaseous species to performance of  $CO_2$  sensing film is investigated. For oxygen, rare gas, and carbon monoxide, no change of sensitivity of  $CO_2$  sensing film is observed. When  $CO_2$  sensing film is exposed acid gas such as HCl, in contrast, the observed luminescence from  $CO_2$  sensing film increased the same as  $CO_2$  gas. However, no observed luminescence change of  $CO_2$  sensing film is observed when the film is exposed to argon gas. Thus, the present  $CO_2$  sensor is interfered from the acid gas such as HCl. In contrast, no change of sensitivity of  $CO_2$  sensing film is observed by basic gas such as  $NH_3$  gas. As this

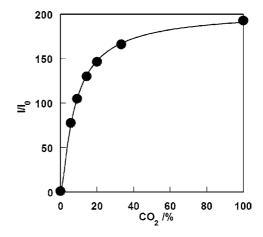



Fig. 2. The  $I/I_0$  value of  $CO_2$  sensing film under various  $CO_2$  concentrations. The excitation and emission wavelengths are 350 and 655 nm, respectively. The solid line is the best-fit using Eq. (5).

CO<sub>2</sub> sensing film contains the excess OH<sup>-</sup>, this film shows no sensitivity for basic gas. The improvement of interference from acidic and basic gaseous to CO<sub>2</sub> sensing film is being studied in detail.

#### 3.3. Response and recovery properties

An operational stability test of  $CO_2$  sensing film is studied. At first, the response and recovery properties of  $CO_2$  sensing film is conducted by reading the luminescence intensity signal while  $CO_2$  saturated and argon saturated are investigated. Fig. 3 shows the response and recovery properties of  $CO_2$  sensing film for  $600 \, \text{s}$ . The response times for sensing film are defined the 90% response and recovery times, exhibited by the sensors when they are exposed to an alternating atmosphere of  $CO_2$  and argon, respectively. The response time

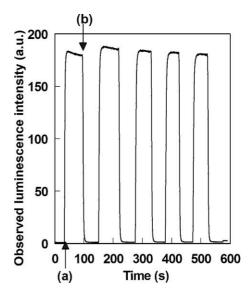



Fig. 3. Response and recovery characteristic of  $CO_2$  sensing film on switching between 100% argon (1) and 100%  $CO_2$  (2). The excitation and emission wavelengths are 350 and 655 nm, respectively.

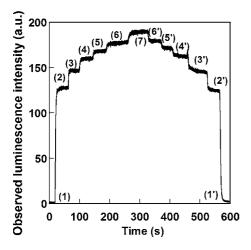



Fig. 4. Response and recovery characteristic of  $CO_2$  sensing film when increasing and decreasing  $CO_2$  concentrations change. The excitation and emission wavelengths are 350 and 655 nm, respectively. (1), (1') 0; (2), (2') 12.0;(3), (3') 16.0; (4), (4') 25.0; (5), (5') 30.0; (6), (6') 33.3; (7) 100%  $CO_2$ .

for switching from argon to  $CO_2$  of the  $CO_2$  sensing film is  $5.6 \pm 1.3$  s. The recovery time for switching from  $CO_2$  to argon of the film is  $4.7 \pm 0.2$  s. These results indicate that the  $CO_2$  sensing film especially shows a rapid recovery for switching from  $CO_2$  to argon.

Next let us focus on the measurement hysterisis of  $CO_2$  sensing film. At first, the response and recovery characteristic of  $CO_2$  sensing film is shown in Fig. 4 when increasing and decreasing  $CO_2$  concentrations change. The signal changes are fully reversible and measurement hysterisis is not observed. Next, dynamic response of the  $CO_2$  sensing film under various  $CO_2$  concentrations is shown in Fig. 5. This test is repeated and signal changes are monitored when increasing and decreasing  $CO_2$  concentrations change randomly. The signal changes also are fully reversible and measurement hysteri-

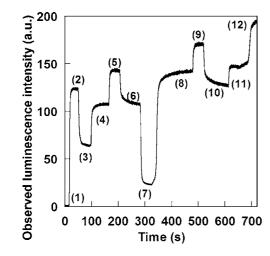



Fig. 5. Dynamic response of  $CO_2$  sensing film when  $CO_2$  concentrations are changed randomly. (1) 0; (2) 12.0; (3) 5.0; (4) 9.09; (5) 16.0; (6) 9.09; (7) 3.0; (8) 14.3; (9) 33.3; (10) 28.0; (11) 33.3; (12) 100%  $CO_2$ .

sis is not observed. From the response and recovery times of  $CO_2$  sensing film are less than 6.0 s as shown in Fig. 3. From Figs. 4 and 5, however, the realistic response time of  $CO_2$  sensing film under various  $CO_2$  gas concentration changes is less than 30 s.

The important problem for the application to an optical  $CO_2$  sensing is photostability of  $CO_2$  sensing film. After continuously the light with 350 nm is irradiation to  $CO_2$  sensing film for 24 h, little charge of  $CO_2$  sensing properties is observed. This result indicates that this  $CO_2$  sensing film is stable against irradiation.

This CO<sub>2</sub> sensing film is applied for the CO<sub>2</sub> measurement using fluorescence spectral change in water media. The sample substrate is mounted at  $45^{\circ}$  angle in the quartz cell with pure water. Different CO<sub>2</sub> standards (in the range 0–100%) in a gas stream are produced by controlling the flow rates of CO<sub>2</sub> and argon gases entering the quartz cell with pure water and sample substrate. The  $I_0/I_{100}$  value of CO<sub>2</sub> sensing film is estimated to be 204. However, the response and recovery times are 38 and 87 s, respectively. The diffusion of CO<sub>2</sub> and argon gas in water is lower than that in gas phase. Thus, the response properties of CO<sub>2</sub> sensing film in water media are lower than that in gas phase measurements.

The thickness effect of  $\alpha$ -naphtholphthalein in poly-IBM layer of CO<sub>2</sub> sensing film on the CO<sub>2</sub> sensing and response properties is studied. The  $I_0/I_{100}$  values of  $\alpha$ -naphtholphthalein in polyIBM layer with the thickness of 10, 20 and 30  $\mu$ m are 192, 73.8 and 25.0, respectively. The response times of  $\alpha$ -naphtholphthalein in polyIBM layer with the thickness of 10, 20 and 30  $\mu$ m are 5.6  $\pm$  1.3, 8.8  $\pm$  1.2 and 10.1  $\pm$  1.3 s, respectively. The recovery times of the films with the thickness of 10, 20 and 30  $\mu$ m are 4.7  $\pm$  0.2, 7.7  $\pm$  1.2 and 12.2  $\pm$  1.3 s, respectively. The diffusion of CO<sub>2</sub> and argon gaseous is more rapid with decrease the thickness of  $\alpha$ -naphtholphthalein in polyIBM layer. Thus, the sensitivity and response properties of CO<sub>2</sub> sensing film are improved using the thinner  $\alpha$ -naphtholphthalein in polyIBM layer.

## 4. Conclusion

An optical sensor for  $CO_2$  based on fluorescence intensity changes of TPP due to the absorption change of  $\alpha$ -naphtholphthalein in polyIBM layer with  $CO_2$  is developed. The observed fluorescence intensity from TPP at 655 nm increased with increasing the  $CO_2$  concentrations. The  $I_{100}/I_0$  value of the  $CO_2$  sensor is 192. The  $CO_2$  sensing film can be calibrated by the plot of  $I/I_0$  versus the  $CO_2$  concentration. The response and recovery times of the sensing film are less than 6.0 s for switching from argon to  $CO_2$ , and for switching from  $CO_2$  to argon. The signal changes are fully reversible and no hysterisis is observed during the measurements. The highly sensitive optical  $CO_2$  sensor based on fluorescence intensity changes of TPP due to the absorption change of  $\alpha$ -naphtholphthalein in polyIBM layer with  $CO_2$  is achieved.

# Acknowledgement

This work is partially supported by Tateishi Science and Technology Foundation, and "Molecular Sensors for Aero-Thermodynamic Research (MOSAIC)", the Special Coordination Funds from the Ministry of Education, Culture, Sports, Science and Technology Agency.

#### References

- J. Dakin, B. Culshaw, Optical Fiber Sensors, Artech House, Boston, 1998.
- [2] O.S. Wolfbeis, Fiber Optical Chemical Sensor and Biosensors, CRC Press, Boca Raton, FL, 1991.
- [3] J.W. Severinghaus, A.F. Bradley, J. Appl. Physiol. 13 (1958) 515.
- [4] A. Mills, L. Monaf, Analyst 121 (1986) 1.
- [5] A. Mills, Q. Chang, H.M. McMurray, Anal. Chem. 64 (1992) 1383.
- [6] A. Mills, A. Lepre, L. Wild, Sens. Actuat. B 38-39 (1997) 419.
- [7] Y. Kawabata, T. Kamichika, T. Imasaka, N. Ishibashi, Anal. Chim. Acta 219 (1989) 223.

- [8] C.G. Cooney, B.C. Towe, C.R. Eyster, Sens. Actuat. B 69 (2000)
- [9] M.D. Marazuela, M.C. Moleno-Bondi, G. Orellana, Sens. Actuat. B 29 (1995) 126.
- [10] Z. Zhujun, R. Seitz, Anal. Chim. Acta 160 (1984) 305.
- [11] O.S. Wolfbeis, L.J. Weis, M.J.P. Leiner, W.E. Ziegler, Anal. Chem. 60 (1988) 2028.
- [12] A. Mills, Q. Chang, Analyst 118 (1993) 839.
- [13] C. Munkholm, D.R. Walt, F.P. Milanovich, Talanta 35 (1988) 109.
- [14] K. Ertekin, I. Klimant, G. Neurauter, O.S. Wolfbeis, Talanta 59 (2003) 261.
- [15] D.R. Walt, G. Gabor, C. Goyet, Anal. Chim. Acta 274 (1993) 47.
- [16] P. Yuan, D.R. Walt, J. Fluoresc. 2 (1992) 231.
- [17] G. Gabor, S. Chadha, D.R. Walt, Anal. Chim. Acta 313 (1995) 131.
- [18] N. Nakamura, Y. Amao, Sens. Actuat. B 92 (2003) 98.
- [19] N. Nakamura, Y. Amao, Bull. Chem. Soc. Jpn. 76 (2003) 1459.
- [20] N. Nakamura, Y. Amao, Anal. Bioanal. Chem. 376 (2003) 642.
- [21] Y. Amao, N. Nakamura, Sens. Actuat. B 100 (2004) 347.
- [22] S. Pauly, Polymer Handbook, 3rd ed., Wiley, New York, 1989.
- [23] B.D. MacCraith, C.M. McDonagh, G. O'Keeffe, E.T. Keyes, J.G. Vos, B. O'Kelly, J.F. McGilp, Analyst 118 (1993) 385.